Xref: helios.physics.utoronto.ca sci.physics:82637 sci.physics.particle:1487 alt.sci.physi
Xref: helios.physics.utoronto.ca sci.physics:82637 sci.physics.particle:1487 alt.sci.physics.newtheories:6762 news.answers:28745 sci.answers:1568 alt.answers:4355
Path: csa5.lbl.gov!sichase
From: sichase@csa2.lbl.gov (SCOTT I CHASE)
Newsgroups: sci.physics,sci.physics.particle,alt.sci.physics.newtheories,news.answers,sci.answers,alt.answers
Subject: Sci.Physics Frequently Asked Questions (4/4)  Particles/SR/Quantum
FollowupTo: sci.physics
Date: 6 Sep 1994 13:33 PST
Organization: Lawrence Berkeley Laboratory  Berkeley, CA, USA
Lines: 1105
Sender: sichase@csa5.lbl.gov (SCOTT I CHASE)
Approved: newsanswersrequest@MIT.Edu
Distribution: world
Expires: Sat, 1 October 1994 00:00:00 GMT
MessageID: <6SEP199413334466@csa5.lbl.gov>
ReplyTo: sichase@csa2.lbl.gov
NNTPPostingHost: csa5.lbl.gov
Summary: This posting contains a list of Frequently Asked Questions
(and their answers) about physics, and should be read by anyone who
wishes to post to the sci.physics.* newsgroups.
Keywords: Sci.physics FAQ Particles Special Relativity Quantum Mechanics
NewsSoftware: VAX/VMS VNEWS 1.50
Archivename: physicsfaq/part4
Lastmodified: 31MAY1994

FREQUENTLY ASKED QUESTIONS ON SCI.PHYSICS  Part 4/4

Item 23. Special Relativistic Paradoxes  part (a)
The Barn and the Pole updated 4AUG1992 by SIC
 original by Robert Firth
These are the props. You own a barn, 40m long, with automatic
doors at either end, that can be opened and closed simultaneously by a
switch. You also have a pole, 80m long, which of course won't fit in the
barn.
Now someone takes the pole and tries to run (at nearly the speed of
light) through the barn with the pole horizontal. Special Relativity (SR)
says that a moving object is contracted in the direction of motion: this is
called the Lorentz Contraction. So, if the pole is set in motion
lengthwise, then it will contract in the reference frame of a stationary
observer.
You are that observer, sitting on the barn roof. You see the pole
coming towards you, and it has contracted to a bit less than 40m. So, as
the pole passes through the barn, there is an instant when it is completely
within the barn. At that instant, you close both doors. Of course, you
open them again pretty quickly, but at least momentarily you had the
contracted pole shut up in your barn. The runner emerges from the far door
unscathed.
But consider the problem from the point of view of the runner. She
will regard the pole as stationary, and the barn as approaching at high
speed. In this reference frame, the pole is still 80m long, and the barn
is less than 20 meters long. Surely the runner is in trouble if the doors
close while she is inside. The pole is sure to get caught.
Well does the pole get caught in the door or doesn't it? You can't
have it both ways. This is the "Barnpole paradox." The answer is buried
in the misuse of the word "simultaneously" back in the first sentence of
the story. In SR, that events separated in space that appear simultaneous
in one frame of reference need not appear simultaneous in another frame of
reference. The closing doors are two such separate events.
SR explains that the two doors are never closed at the same time in
the runner's frame of reference. So there is always room for the pole. In
fact, the Lorentz transformation for time is t'=(tv*x/c^2)/sqrt(1v^2/c^2).
It's the v*x term in the numerator that causes the mischief here. In the
runner's frame the further event (larger x) happens earlier. The far door
is closed first. It opens before she gets there, and the near door closes
behind her. Safe again  either way you look at it, provided you remember
that simultaneity is not a constant of physics.
References: Taylor and Wheeler's _Spacetime Physics_ is the classic.
Feynman's _Lectures_ are interesting as well.
********************************************************************************
Item 23. Special Relativistic Paradoxes  part (b)
The Twin Paradox updated 04MAR1994 by SIC
 original by Kurt Sonnenmoser
A Short Story about Space Travel:
Two twins, conveniently named A and B, both know the rules of
Special Relativity. One of them, B, decides to travel out into space with
a velocity near the speed of light for a time T, after which she returns to
Earth. Meanwhile, her boring sister A sits at home posting to Usenet all
day. When B finally comes home, what do the two sisters find? Special
Relativity (SR) tells A that time was slowed down for the relativistic
sister, B, so that upon her return to Earth, she knows that B will be
younger than she is, which she suspects was the the ulterior motive of the
trip from the start.
But B sees things differently. She took the trip just to get away
from the conspiracy theorists on Usenet, knowing full well that from her
point of view, sitting in the spaceship, it would be her sister, A, who
was travelling ultrarelativistically for the whole time, so that she would
arrive home to find that A was much younger than she was. Unfortunate, but
worth it just to get away for a while.
What are we to conclude? Which twin is really younger? How can SR
give two answers to the same question? How do we avoid this apparent
paradox? Maybe twinning is not allowed in SR? Read on.
Paradox Resolved:
Much of the confusion surrounding the socalled Twin Paradox
originates from the attempts to put the two twins into different frames 
without the useful concept of the proper time of a moving body.
SR offers a conceptually very clear treatment of this problem.
First chose _one_ specific inertial frame of reference; let's call it S.
Second define the paths that A and B take, their socalled world lines. As
an example, take (ct,0,0,0) as representing the world line of A, and
(ct,f(t),0,0) as representing the world line of B (assuming that the the
rest frame of the Earth was inertial). The meaning of the above notation is
that at time t, A is at the spatial location (x1,x2,x3)=(0,0,0) and B is at
(x1,x2,x3)=(f(t),0,0)  always with respect to S.
Let us now assume that A and B are at the same place at the time t1
and again at a later time t2, and that they both carry highquality clocks
which indicate zero at time t1. High quality in this context means that the
precision of the clock is independent of acceleration. [In principle, a
bunch of muons provides such a device (unit of time: halflife of their
decay).]
The correct expression for the time T such a clock will indicate at
time t2 is the following [the second form is slightly less general than the
first, but it's the good one for actual calculations]:
t2 t2 _______________
/ / / 2 
T =  d\tau =  dt \/ 1  [v(t)/c] (1)
/ /
t1 t1
where d\tau is the socalled propertime interval, defined by
2 2 2 2 2
(c d\tau) = (c dt)  dx1  dx2  dx3 .
Furthermore,
d d
v(t) =  (x1(t), x2(t), x3(t)) =  x(t)
dt dt
is the velocity vector of the moving object. The physical interpretation
of the propertime interval, namely that it is the amount the clock time
will advance if the clock moves by dx during dt, arises from considering
the inertial frame in which the clock is at rest at time t  its
socalled momentary rest frame (see the literature cited below). [Notice
that this argument is only of a heuristic value, since one has to assume
that the absolute value of the acceleration has no effect. The ultimate
justification of this interpretation must come from experiment.]
The integral in (1) can be difficult to evaluate, but certain
important facts are immediately obvious. If the object is at rest with
respect to S, one trivially obtains T = t2t1. In all other cases, T must
be strictly smaller than t2t1, since the integrand is always less than or
equal to unity. Conclusion: the traveling twin is younger. Furthermore, if
she moves with constant velocity v most of the time (periods of
acceleration short compared to the duration of the whole trip), T will
approximately be given by ____________
/ 2 
(t2t1) \/ 1  [v/c] . (2)
The last expression is exact for a round trip (e.g. a circle) with constant
velocity v. [At the times t1 and t2, twin B flies past twin A and they
compare their clocks.]
Now the big deal with SR, in the present context, is that T (or
d\tau, respectively) is a socalled Lorentz scalar. In other words, its
value does not depend on the choice of S. If we Lorentz transform the
coordinates of the world lines of the twins to another inertial frame S',
we will get the same result for T in S' as in S. This is a mathematical
fact. It shows that the situation of the traveling twins cannot possibly
lead to a paradox _within_ the framework of SR. It could at most be in
conflict with experimental results, which is also not the case.
Of course the situation of the two twins is not symmetric, although
one might be tempted by expression (2) to think the opposite. Twin A is
at rest in one and the same inertial frame for all times, whereas twin B
is not. [Formula (1) does not hold in an accelerated frame.] This breaks
the apparent symmetry of the two situations, and provides the clearest
nonmathematical hint that one twin will in fact be younger than the other
at the end of the trip. To figure out *which* twin is the younger one, use
the formulae above in a frame in which they are valid, and you will find
that B is in fact younger, despite her expectations.
It is sometimes claimed that one has to resort to General
Relativity in order to "resolve" the Twin "Paradox". This is not true. In
flat, or nearly flat spacetime (no strong gravity), SR is completely
sufficient, and it has also no problem with world lines corresponding to
accelerated motion.
References:
Taylor and Wheeler, _Spacetime Physics_ (An *excellent* discussion)
Goldstein, _Classical Mechanics_, 2nd edition, Chap.7 (for a good
general discussion of Lorentz transformations and other SR basics.)
********************************************************************************
Item 23. Special Relativistic Paradoxes  part (c)
The Superluminal Scissors updated 31MAR1993
 original by Scott I.Chase
A Gedankenexperiment:
Imagine a huge pair of scissors, with blades one lightyear long.
The handle is only about two feet long, creating a huge lever arm,
initially open by a few degrees. Then you suddenly close the scissors.
This action takes about a tenth of a second. Doesn't the contact point
where the two blades touch move down the blades *much* faster than the
speed of light? After all, the scissors close in a tenth of a second, but
the blades are a lightyear long. That seems to mean that the contact
point has moved down the blades at the remarkable speed of 10 lightyears
per second. This is more than 10^8 times the speed of light! But this
seems to violate the most important rule of Special Relativity  no signal
can travel faster than the speed of light. What's going on here?
Explanation:
We have mistakenly assumed that the scissors do in fact close when
you close the handle. But, in fact, according to Special Relativity, this
is not at all what happens. What *does* happen is that the blades of the
scissors flex. No matter what material you use for the scissors, SR sets a
theoretical upper limit to the rigidity of the material. In short, when
you close the scissors, they bend.
The point at which the blades bend propagates down the blade at
some speed less than the speed of light. On the near side of this point,
the scissors are closed. On the far side of this point, the scissors
remain open. You have, in fact, sent a kind of wave down the scissors,
carrying the information that the scissors have been closed. But this wave
does not travel faster than the speed of light. It will take at least one
year for the tips of the blades, at the far end of the scissors, to feel
any force whatsoever, and, ultimately, to come together to completely close
the scissors.
As a practical matter, this theoretical upper limit to the rigidity
of the metal in the scissors is *far* higher than the rigidity of any real
material, so it would, in practice, take much much longer to close a real
pair of metal scissors with blades as long as these.
One can analyze this problem microscopically as well. The
electromagnetic force which binds the atoms of the scissors together
propagates at the speeds of light. So if you displace some set of atoms in
the scissor (such as the entire handles), the force will not propagate down
the scissor instantaneously, This means that a scissor this big *must*
cease to act as a rigid body. You can move parts of it without other parts
moving at the same time. It takes some finite time for the changing forces
on the scissor to propagate from atom to atom, letting the far tip of the
blades "know" that the scissors have been closed.
Caveat:
The contact point where the two blades meet is not a physical
object. So there is no fundamental reason why it could not move faster
than the speed of light, provided that you arrange your experiment correctly.
In fact it can be done with scissors provided that your scissors are short
enough and wide open to start, very different conditions than those spelled
out in the gedankenexperiment above. In this case it will take you quite
a while to bring the blades together  more than enough time for light to
travel to the tips of the scissors. When the blades finally come together,
if they have the right shape, the contact point can indeed move faster
than light.
Think about the simpler case of two rulers pinned together at an
edge point at the ends. Slam the two rulers together and the contact point
will move infinitely fast to the far end of the rulers at the instant
they touch. So long as the rulers are short enough that contact does not
happen until the signal propagates to the far ends of the rulers, the
rulers will indeed be straight when they meet. Only if the rulers are
too long will they be bent like our very long scissors, above, when they
touch. The contact point can move faster than the speed of light, but
the energy (or signal) of the closing force can not.
An analogy, equivalent in terms of information content, is, say, a
line of strobe lights. You want to light them up one at a time, so that
the `bright' spot travels faster than light. To do so, you can send a
_luminal_ signal down the line, telling each strobe light to wait a
little while before flashing. If you decrease the wait time with
each successive strobe light, the apparent bright spot will travel faster
than light, since the strobes on the end didn't wait as long after getting
the goahead, as did the ones at the beginning. But the bright spot
can't pass the original signal, because then the strobe lights wouldn't
know to flash.
********************************************************************************
Item 24.
TOP QUARK updated: 26APR1994 by SIC
 original by Scott I. Chase
The top quark is the hypothetical sixth fundamental strongly
interacting particle (quark). The known quarks are up (u), down (d),
strange (s), charm (c) and bottom (b). The Standard Model requires quarks
to come in pairs in order to prevent mathematical inconsistency due to
certain "anomalous" Feynman diagrams, which cancel if and only if the
quarks are paired. The pairs are (d,u),(s,c) and (b,?). The missing
partner of the b is called "top".
In addition, there is experimental evidence that the b quark has an
"isodoublet" partner, which is so far unseen. The forwardbackward
asymmetry in the reaction e+ + e > b + bbar and the absence of
flavorchanging neutral currents in b decays imply the existence of the
isodoublet partner of the b. ("bbar", pronounced "bee bar", signifies the
b antiquark.)
The mass of the top quark is restricted by a variety of
measurements. Due to radiative corrections which depend on the top quark
circulating as a virtual particle inside the loop in the Feynman diagram,
a number of experimentally accessible processes depend on the top quark
mass. There are about a dozen such measurements which have been made so
far, including the width of the Z, bbbar mixing (which historically gave
the first hints that the top quark was very massive), and certain aspects
of muon decay. These results collectively limit the top mass to roughly
170 +/ 20 GeV. This uncertainty is a "1sigma" error bar, and is dominated
by recent LEP results on the Z width and line shape. (Estimates based
on preLEP data had been somewhat lower, roughly 145 +/ 25 TeV)
Direct searches for the top quark have been performed, looking for
the expected decay products in both ppbar and e+e collisions. The best
current results on the top mass are:
(1) From the absence of Z > t + tbar, M(t) > M(Z)/2 = 45 GeV.
This is a "model independent" result, depending only on the fact that the
top quark should be weakly interacting, coupling to the Z with sufficient
strength to have been detected at the current resolution of the LEP
experiments which have cornered the market on Z physics in the last several
years.
(2) From the absence of top quark decay products in the reaction p
+ pbar > t + tbar > hard leptons + X at Fermilab's Tevatron collider,
the CDF (Collider Detector at Fermilab) and D0 experiments. Each top quark
is expect to decay into a W boson and a b quark. Each W subsequently decays
into either a charged lepton and a neutrino or two quarks. The cleanest
signature for the production and decay of the ttbar pair is the presence
of two hightransversemomentum (high Pt) leptons (electron or muon) in the
final state. Other decay modes have higher branching ratios, but have
serious experimental backgrounds from W bosons produced in association with
jets. The current published lower limit on M(t) from such measurements is
131 GeV (95% confidence), from D0. However, this limit assumes that the
top quark has the expected decay products in the expected branching ratios,
making these limits "model dependent," and consequently not as "hard" as
the considerably lower LEP limit of ~45 GeV.
(3) CDF has announced new results which, though they fall short
of a "discovery," consistute "evidence for" a top quark. They have 12
events, of which about 6 are background, which have the expected
characteristics for top quark decay products in in the final state.
The statistical significance of these results is 2.8 sigma, which is
marginal. They expect 45 times more data to be acquired in 19945.
On the assumption that their excess signal is due to top quark decays,
they calculate a top quark mass of 174+/10+1312 GeV.
The future is very bright for studying the top quark. LEP II, the
upgrade of CERN's e+e collider to E >= 2*Mw = 160 GeV by 1995, will allow
a hard lower limit of roughly 90 GeV to be set. Meanwhile, upgrades to
CDF and D0 and upgrades to the accelerator complex at Fermilab have recently
allowed higher event rates and better detector resolution, should allow
production of standard model top quarks in the expected mass range in the
next two years, at high enough event rate to identify the decays and give
rough mass measurements, finally confirming beyond doubt the existence
of the sixth, and possibly last, quark.
References: Phys. Rev. Lett. _68_, 447 (1992) and the references therein.
Phys. Rev. Lett. _72_, 2138 (1994)
Fermilab preprint, number FERMILABPUB94/097E.
********************************************************************************
Item 25.
Tachyons updated: 22MAR1993 by SIC
 original by Scott I. Chase
There was a young lady named Bright,
Whose speed was far faster than light.
She went out one day,
In a relative way,
And returned the previous night!
Reginald Buller
It is a well known fact that nothing can travel faster than the
speed of light. At best, a massless particle travels at the speed of light.
But is this really true? In 1962, Bilaniuk, Deshpande, and Sudarshan, Am.
J. Phys. _30_, 718 (1962), said "no". A very readable paper is Bilaniuk
and Sudarshan, Phys. Today _22_,43 (1969). I give here a brief overview.
Draw a graph, with momentum (p) on the xaxis, and energy (E) on
the yaxis. Then draw the "light cone", two lines with the equations E =
+/ p. This divides our 1+1 dimensional spacetime into two regions. Above
and below are the "timelike" quadrants, and to the left and right are the
"spacelike" quadrants.
Now the fundamental fact of relativity is that E^2  p^2 = m^2.
(Let's take c=1 for the rest of the discussion.) For any nonzero value of
m (mass), this is an hyperbola with branches in the timelike regions. It
passes through the point (p,E) = (0,m), where the particle is at rest. Any
particle with mass m is constrained to move on the upper branch of this
hyperbola. (Otherwise, it is "offshell", a term you hear in association
with virtual particles  but that's another topic.) For massless particles,
E^2 = p^2, and the particle moves on the lightcone.
These two cases are given the names tardyon (or bradyon in more
modern usage) and luxon, for "slow particle" and "light particle". Tachyon
is the name given to the supposed "fast particle" which would move with v>c.
Now another familiar relativistic equation is E =
m*[1(v/c)^2]^(.5). Tachyons (if they exist) have v > c. This means that
E is imaginary! Well, what if we take the rest mass m, and take it to be
imaginary? Then E is negative real, and E^2  p^2 = m^2 < 0. Or, p^2 
E^2 = M^2, where M is real. This is a hyperbola with branches in the
spacelike region of spacetime. The energy and momentum of a tachyon must
satisfy this relation.
You can now deduce many interesting properties of tachyons. For
example, they accelerate (p goes up) if they lose energy (E goes down).
Futhermore, a zeroenergy tachyon is "transcendent," or infinitely fast.
This has profound consequences. For example, let's say that there were
electrically charged tachyons. Since they would move faster than the speed
of light in the vacuum, they should produce Cerenkov radiation. This would
*lower* their energy, causing them to accelerate more! In other words,
charged tachyons would probably lead to a runaway reaction releasing an
arbitrarily large amount of energy. This suggests that coming up with a
sensible theory of anything except free (noninteracting) tachyons is likely
to be difficult. Heuristically, the problem is that we can get spontaneous
creation of tachyonantitachyon pairs, then do a runaway reaction, making
the vacuum unstable. To treat this precisely requires quantum field theory,
which gets complicated. It is not easy to summarize results here. However,
one reasonably modern reference is _Tachyons, Monopoles, and Related
Topics_, E. Recami, ed. (NorthHolland, Amsterdam, 1978).
However, tachyons are not entirely invisible. You can imagine that
you might produce them in some exotic nuclear reaction. If they are
charged, you could "see" them by detecting the Cerenkov light they produce
as they speed away faster and faster. Such experiments have been done. So
far, no tachyons have been found. Even neutral tachyons can scatter off
normal matter with experimentally observable consequences. Again, no such
tachyons have been found.
How about using tachyons to transmit information faster than the
speed of light, in violation of Special Relativity? It's worth noting
that when one considers the relativistic quantum mechanics of tachyons, the
question of whether they "really" go faster than the speed of light becomes
much more touchy! In this framework, tachyons are *waves* that satisfy a
wave equation. Let's treat free tachyons of spin zero, for simplicity.
We'll set c = 1 to keep things less messy. The wavefunction of a single
such tachyon can be expected to satisfy the usual equation for spinzero
particles, the KleinGordon equation:
(BOX + m^2)phi = 0
where BOX is the D'Alembertian, which in 3+1 dimensions is just
BOX = (d/dt)^2  (d/dx)^2  (d/dy)^2  (d/dz)^2.
The difference with tachyons is that m^2 is *negative*, and m is
imaginary.
To simplify the math a bit, let's work in 1+1 dimensions, with
coordinates x and t, so that
BOX = (d/dt)^2  (d/dx)^2
Everything we'll say generalizes to the realworld 3+1dimensional case.
Now  regardless of m, any solution is a linear combination, or
superposition, of solutions of the form
phi(t,x) = exp(iEt + ipx)
where E^2  p^2 = m^2. When m^2 is negative there are two essentially
different cases. Either p >= E, in which case E is real and
we get solutions that look like waves whose crests move along at the
rate p/E >= 1, i.e., no slower than the speed of light. Or p <
E, in which case E is imaginary and we get solutions that look waves
that amplify exponentially as time passes!
We can decide as we please whether or not we want to consider the second
sort of solutions. They seem weird, but then the whole business is
weird, after all.
1) If we *do* permit the second sort of solution, we can solve the
KleinGordon equation with any reasonable initial data  that is, any
reasonable values of phi and its first time derivative at t = 0. (For
the precise definition of "reasonable," consult your local
mathematician.) This is typical of wave equations. And, also typical
of wave equations, we can prove the following thing: If the solution phi
and its time derivative are zero outside the interval [L,L] when t = 0,
they will be zero outside the interval [Lt, L+t] at any time t.
In other words, localized disturbances do not spread with speed faster
than the speed of light! This seems to go against our notion that
tachyons move faster than the speed of light, but it's a mathematical
fact, known as "unit propagation velocity".
2) If we *don't* permit the second sort of solution, we can't solve the
KleinGordon equation for all reasonable initial data, but only for initial
data whose Fourier transforms vanish in the interval [m,m]. By the
PaleyWiener theorem this has an odd consequence: it becomes
impossible to solve the equation for initial data that vanish outside
some interval [L,L]! In other words, we can no longer "localize" our
tachyon in any bounded region in the first place, so it becomes
impossible to decide whether or not there is "unit propagation
velocity" in the precise sense of part 1). Of course, the crests of
the waves exp(iEt + ipx) move faster than the speed of light, but these
waves were never localized in the first place!
The bottom line is that you can't use tachyons to send information
faster than the speed of light from one place to another. Doing so would
require creating a message encoded some way in a localized tachyon field,
and sending it off at superluminal speed toward the intended receiver. But
as we have seen you can't have it both ways  localized tachyon disturbances
are subluminal and superluminal disturbances are nonlocal.
********************************************************************************
Item 26.
The Particle Zoo updated 9OCT1992 by SIC
 original by Matt Austern
If you look in the Particle Data Book, you will find more than 150
particles listed there. It isn't quite as bad as that, though...
The particles are in three categories: leptons, mesons, and
baryons. Leptons are particle that are like the electron: they are
spin1/2, and they do not undergo the strong interaction. There are three
charged leptons, the electron, muon, and tau, and three neutral leptons, or
neutrinos. (The muon and the tau are both shortlived.)
Mesons and baryons both undergo strong interactions. The
difference is that mesons have integral spin (0, 1,...), while baryons have
halfintegral spin (1/2, 3/2,...). The most familiar baryons are the
proton and the neutron; all others are shortlived. The most familiar
meson is the pion; its lifetime is 26 nanoseconds, and all other mesons
decay even faster.
Most of those 150+ particles are mesons and baryons, or,
collectively, hadrons. The situation was enormously simplified in the
1960s by the "quark model," which says that hadrons are made out of
spin1/2 particles called quarks. A meson, in this model, is made out of a
quark and an antiquark, and a baryon is made out of three quarks. We
don't see free quarks (they are bound together too tightly), but only
hadrons; nevertheless, the evidence for quarks is compelling. Quark masses
are not very well defined, since they are not free particles, but we can
give estimates. The masses below are in GeV; the first is current mass
and the second constituent mass (which includes some of the effects of the
binding energy):
Generation: 1 2 3
Ulike: u=.006/.311 c=1.50/1.65 t=91200/91200
Dlike: d=.010/.315 s=.200/.500 b=5.10/5.10
In the quark model, there are only 12 elementary particles, which
appear in three "generations." The first generation consists of the up
quark, the down quark, the electron, and the electron neutrino. (Each of
these also has an associated antiparticle.) These particles make up all of
the ordinary matter we see around us. There are two other generations,
which are essentially the same, but with heavier particles. The second
consists of the charm quark, the strange quark, the muon, and the muon
neutrino; and the third consists of the top quark, the bottom quark, the
tau, and the tau neutrino. (The top has not been directly observed; see
the "Top Quark" FAQ entry for details.) These three generations are
sometimes called the "electron family", the "muon family", and the "tau
family."
Finally, according to quantum field theory, particles interact by
exchanging "gauge bosons," which are also particles. The most familiar on
is the photon, which is responsible for electromagnetic interactions.
There are also eight gluons, which are responsible for strong interactions,
and the W+, W, and Z, which are responsible for weak interactions.
The picture, then, is this:
FUNDAMENTAL PARTICLES OF MATTER
Charge 
1  e  mu  tau 
0  nu(e) nu(mu) nu(tau)
 + antiparticles
1/3  down strangebottom 
2/3  up  charm  top 

GAUGE BOSONS
Charge Force
0 photon electromagnetism
0 gluons (8 of them) strong force
+1 W+ and W weak force
0 Z weak force
The Standard Model of particle physics also predict the
existence of a "Higgs boson," which has to do with breaking a symmetry
involving these forces, and which is responsible for the masses of all the
other particles. It has not yet been found. More complicated theories
predict additional particles, including, for example, gauginos and sleptons
and squarks (from supersymmetry), W' and Z' (additional weak bosons), X and
Y bosons (from GUT theories), Majorons, familons, axions, paraleptons,
ortholeptons, technipions (from technicolor models), B' (hadrons with
fourth generation quarks), magnetic monopoles, e* (excited leptons), etc.
None of these "exotica" have yet been seen. The search is on!
REFERENCES:
The best reference for information on which particles exist, their
masses, etc., is the Particle Data Book. It is published every two years;
the most recent edition is Physical Review D Vol.45 No.11 (1992).
There are several good books that discuss particle physics on a
level accessible to anyone who knows a bit of quantum mechanics. One is
_Introduction to High Energy Physics_, by Perkins. Another, which takes a
more historical approach and includes many original papers, is
_Experimental Foundations of Particle Physics_, by Cahn and Goldhaber.
For a book that is accessible to nonphysicists, you could try _The
Particle Explosion_ by Close, Sutton, and Marten. This book has fantastic
photography.
********************************************************************************
Item 27. original by Scott I. Chase
Does Antimatter Fall Up or Down?

This question has never been subject to a successful direct experiment.
In other words, nobody has ever directly measured the gravititational
acceleration of antimatter. So the bottom line is that we don't know yet.
However, there is a lot more to say than just that, with regard to both
theory and experiment. Here is a summary of the current state of affairs.
(1) Is is even theoretically possible for antimatter to fall up?
Answer: According to GR, antimatter falls down.
If you believe that General Relativity is the exact true theory of
gravity, then there is only one possible conclusion  by the equivalence
principle, antiparticles must fall down with the same acceleration as
normal matter.
On the other hand: there are other models of gravity which are not ruled out
by direct experiment which are distinct from GR in that antiparticles can
fall down at different rates than normal matter, or even fall up, due to
additional forces which couple to the mass of the particle in ways which are
different than GR. Some people don't like to call these new couplings
'gravity.' They call them, generically, the 'fifth force,' defining gravity
to be only the GR part of the force. But this is mostly a semantic
distinction. The bottom line is that antiparticles won't fall like normal
particles if one of these models is correct.
There are also a variety of arguments, based upon different aspects of
physics, against the possibility of antigravity. These include constraints
imposed by conservation of energy (the "Morrison argument"), the detectable
effects of virtual antiparticles (the "Schiff argument"), and the absense
of gravitational effect in kaon regeneration experiments. Each of these
does in fact rule out *some* models of antigravity. But none of them
absolutely excludes all possible models of antigravity. See the reference
below for all the details on these issues.
(2) Haven't people done experiments to study this question?
There are no valid *direct* experimental tests of whether antiparticles
fall up or down. There was one wellknown experiment by Fairbank at
Stanford in which he tried to measure the fall of positrons. He found that
they fell normally, but later analyses of his experiment revealed that
he had not accounted for all the sources of stray electromagnetic fields.
Because gravity is so much weaker than EM, this is a difficult experimental
problem. A modern assessment of the Fairbank experiment is that it was
inconclusive.
In order to reduce the effect of gravity, it would be nice to repeat the
Fairbank experiment using objects with the same magnitude of electric
charge as positrons, but with much more mass, to increase the relative
effect of gravity on the motion of the particle. Antiprotons are 1836
times more massive than positrons, so give you three orders of magnitude
more sensitivity. Unfortunately, making many slow antiprotons which you
can watch fall is very difficult. An experiment is under development
at CERN right now to do just that, and within the next couple of years
the results should be known.
Most people expect that antiprotons *will* fall. But it is important
to keep an open mind  we have never directly observed the effect of
gravity on antiparticles. This experiment, if successful, will definitely
be "one for the textbooks."
Reference: Nieto and Goldman, "The Arguments Against 'Antigravity' and
the Gravitational Acceleration of Antimatter," Physics Reports, v.205,
No. 5, p.221.
********************************************************************************
Item 28.
What is the Mass of a Photon? updated 24JUL1992 by SIC
original by Matt Austern
Or, "Does the mass of an object depend on its velocity?"
This question usually comes up in the context of wondering whether
photons are really "massless," since, after all, they have nonzero energy.
The problem is simply that people are using two different definitions of
mass. The overwhelming consensus among physicists today is to say that
photons are massless. However, it is possible to assign a "relativistic
mass" to a photon which depends upon its wavelength. This is based upon
an old usage of the word "mass" which, though not strictly wrong, is not
used much today.
The old definition of mass, called "relativistic mass," assigns
a mass to a particle proportional to its total energy E, and involved
the speed of light, c, in the proportionality constant:
m = E / c^2. (1)
This definition gives every object a velocitydependent mass.
The modern definition assigns every object just one mass, an
invariant quantity that does not depend on velocity. This is given by
m = E_0 / c^2, (2)
where E_0 is the total energy of that object at rest.
The first definition is often used in popularizations, and in some
elementary textbooks. It was once used by practicing physicists, but for
the last few decades, the vast majority of physicists have instead used the
second definition. Sometimes people will use the phrase "rest mass," or
"invariant mass," but this is just for emphasis: mass is mass. The
"relativistic mass" is never used at all. (If you see "relativistic mass"
in your firstyear physics textbook, complain! There is no reason for books
to teach obsolete terminology.)
Note, by the way, that using the standard definition of mass, the
one given by Eq. (2), the equation "E = m c^2" is *not* correct. Using the
standard definition, the relation between the mass and energy of an object
can be written as
E = m c^2 / sqrt(1 v^2/c^2), (3)
or as
E^2 = m^2 c^4 + p^2 c^2, (4)
where v is the object's velocity, and p is its momentum.
In one sense, any definition is just a matter of convention. In
practice, though, physicists now use this definition because it is much
more convenient. The "relativistic mass" of an object is really just the
same as its energy, and there isn't any reason to have another word for
energy: "energy" is a perfectly good word. The mass of an object, though,
is a fundamental and invariant property, and one for which we do need a
word.
The "relativistic mass" is also sometimes confusing because it
mistakenly leads people to think that they can just use it in the Newtonian
relations
F = m a (5)
and
F = G m1 m2 / r^2. (6)
In fact, though, there is no definition of mass for which these
equations are true relativistically: they must be generalized. The
generalizations are more straightforward using the standard definition
of mass than using "relativistic mass."
Oh, and back to photons: people sometimes wonder whether it makes
sense to talk about the "rest mass" of a particle that can never be at
rest. The answer, again, is that "rest mass" is really a misnomer, and it
is not necessary for a particle to be at rest for the concept of mass to
make sense. Technically, it is the invariant length of the particle's
fourmomentum. (You can see this from Eq. (4).) For all photons this is
zero. On the other hand, the "relativistic mass" of photons is frequency
dependent. UV photons are more energetic than visible photons, and so are
more "massive" in this sense, a statement which obscures more than it
elucidates.
Reference: Lev Okun wrote a nice article on this subject in the
June 1989 issue of Physics Today, which includes a historical discussion
of the concept of mass in relativistic physics.
********************************************************************************
Item 29. original by David Brahm
Baryogenesis  Why Are There More Protons Than Antiprotons?

(I) How do we really *know* that the universe is not matterantimatter
symmetric?
(a) The Moon: Neil Armstrong did not annihilate, therefore the moon
is made of matter.
(b) The Sun: Solar cosmic rays are matter, not antimatter.
(c) The other Planets: We have sent probes to almost all. Their survival
demonstrates that the solar system is made of matter.
(d) The Milky Way: Cosmic rays sample material from the entire galaxy.
In cosmic rays, protons outnumber antiprotons 10^4 to 1.
(e) The Universe at large: This is tougher. If there were antimatter
galaxies then we should see gamma emissions from annihilation. Its absence
is strong evidence that at least the nearby clusters of galaxies (e.g., Virgo)
are matterdominated. At larger scales there is little proof.
However, there is a problem, called the "annihilation catastrophe"
which probably eliminates the possibility of a matterantimatter symmetric
universe. Essentially, causality prevents the separation of large chucks
of antimatter from matter fast enough to prevent their mutual annihilation
in in the early universe. So the Universe is most likely matter dominated.
(II) How did it get that way?
Annihilation has made the asymmetry much greater today than in the
early universe. At the high temperature of the first microsecond, there
were large numbers of thermal quarkantiquark pairs. K&T estimate 30
million antiquarks for every 30 million and 1 quarks during this epoch.
That's a tiny asymmetry. Over time most of the antimatter has annihilated
with matter, leaving the very small initial excess of matter to dominate
the Universe.
Here are a few possibilities for why we are matter dominated today:
a) The Universe just started that way.
Not only is this a rather sterile hypothesis, but it doesn't work under
the popular "inflation" theories, which dilute any initial abundances.
b) Baryogenesis occurred around the Grand Unified (GUT) scale (very early).
Long thought to be the only viable candidate, GUT's generically have
baryonviolating reactions, such as proton decay (not yet observed).
c) Baryogenesis occurred at the Electroweak Phase Transition (EWPT).
This is the era when the Higgs first acquired a vacuum expectation value
(vev), so other particles acquired masses. Pure Standard Model physics.
Sakharov enumerated 3 necessary conditions for baryogenesis:
(1) Baryon number violation. If baryon number is conserved in all
reactions, then the present baryon asymmetry can only reflect asymmetric
initial conditions, and we are back to case (a), above.
(2) C and CP violation. Even in the presence of Bviolating
reactions, without a preference for matter over antimatter the Bviolation
will take place at the same rate in both directions, leaving no excess.
(3) Thermodynamic Nonequilibrium. Because CPT guarantees equal
masses for baryons and antibaryons, chemical equilibrium would drive the
necessary reactions to correct for any developing asymmetry.
It turns out the Standard Model satisfies all 3 conditions:
(1) Though the Standard Model conserves B classically (no terms in
the Lagrangian violate B), quantum effects allow the universe to tunnel
between vacua with different values of B. This tunneling is _very_
suppressed at energies/temperatures below 10 TeV (the "sphaleron mass"),
_may_ occur at e.g. SSC energies (controversial), and _certainly_ occurs at
higher temperatures.
(2) Cviolation is commonplace. CPviolation (that's "charge
conjugation" and "parity") has been experimentally observed in kaon
decays, though strictly speaking the Standard Model probably has
insufficient CPviolation to give the observed baryon asymmetry.
(3) Thermal nonequilibrium is achieved during firstorder phase
transitions in the cooling early universe, such as the EWPT (at T = 100 GeV
or so). As bubbles of the "true vacuum" (with a nonzero Higgs vev)
percolate and grow, baryogenesis can occur at or near the bubble walls.
A major theoretical problem, in fact, is that there may be _too_
_much_ Bviolation in the Standard Model, so that after the EWPT is
complete (and condition 3 above is no longer satisfied) any previously
generated baryon asymmetry would be washed out.
References: Kolb and Turner, _The Early Universe_;
Dine, Huet, Singleton & Susskind, Phys.Lett.B257:351 (1991);
Dine, Leigh, Huet, Linde & Linde, Phys.Rev.D46:550 (1992).
********************************************************************************
Item 30.
The EPR Paradox and Bell's Inequality Principle updated 31AUG1993 by SIC
 original by John Blanton
In 1935 Albert Einstein and two colleagues, Boris Podolsky and
Nathan Rosen (EPR) developed a thought experiment to demonstrate what they
felt was a lack of completeness in quantum mechanics. This socalled "EPR
paradox" has lead to much subsequent, and still ongoing, research. This
article is an introduction to EPR, Bell's inequality, and the real
experiments which have attempted to address the interesting issues raised
by this discussion.
One of the principle features of quantum mechanics is that not all
the classical physical observables of a system can be simultaneously known,
either in practice or in principle. Instead, there may be several sets of
observables which give qualitatively different, but nonetheless complete
(maximal possible) descriptions of a quantum mechanical system. These sets
are sets of "good quantum numbers," and are also known as "maximal sets of
commuting observables." Observables from different sets are "noncommuting
observables."
A well known example of noncommuting observables are position and
momentum. You can put a subatomic particle into a state of welldefined
momentum, but then you cannot know where it is  it is, in fact, everywhere
at once. It's not just a matter of your inability to measure, but rather,
an intrinsic property of the particle. Conversely, you can put a particle
in a definite position, but then it's momentum is completely illdefined.
You can also create states of intermediate knowledge of both observables:
If you confine the particle to some arbitrarily large region of space,
you can define the momentum more and more precisely. But you can never
know both, exactly, at the same time.
Position and momentum are continuous observables. But the same
situation can arise for discrete observables such as spin. The quantum
mechanical spin of a particle along each of the three space axes are a set
of mutually noncommuting observables. You can only know the spin along one
axis at a time. A proton with spin "up" along the xaxis has undefined
spin along the y and z axes. You cannot simultaneously measure the x and y
spin projections of a proton. EPR sought to demonstrate that this
phenomenon could be exploited to construct an experiment which would
demonstrate a paradox which they believed was inherent in the
quantummechanical description of the world.
They imagined two physical systems that are allowed to interact
initially so that they subsequently will be defined by a single Schrodinger
wave equation (SWE). [For simplicity, imagine a simple physical
realization of this idea  a neutral pion at rest in your lab, which decays
into a pair of backtoback photons. The pair of photons is described
by a single twoparticle wave function.] Once separated, the two systems
[read: photons] are still described by the same SWE, and a measurement of
one observable of the first system will determine the measurement of the
corresponding observable of the second system. [Example: The neutral pion
is a scalar particle  it has zero angular momentum. So the two photons
must speed off in opposite directions with opposite spin. If photon 1
is found to have spin up along the xaxis, then photon 2 *must* have spin
down along the xaxis, since the total angular momentum of the finalstate,
twophoton, system must be the same as the angular momentum of the intial
state, a single neutral pion. You know the spin of photon 2 even without
measuring it.] Likewise, the measurement of another observable of the first
system will determine the measurement of the corresponding observable of the
second system, even though the systems are no longer physically linked in
the traditional sense of local coupling.
However, QM prohibits the simultaneous knowledge of more than one
mutually noncommuting observable of either system. The paradox of EPR is
the following contradiction: For our coupled systems, we can measure
observable A of system I [for example, photon 1 has spin up along the
xaxis; photon 2 must therefore have xspin down.] and observable B of
system II [for example, photon 2 has spin down along the yaxis; therefore
the yspin of photon 1 must be up.] thereby revealing both observables for
both systems, contrary to QM.
QM dictates that this should be impossible, creating the
paradoxical implication that measuring one system should "poison" any
measurement of the other system, no matter what the distance between
them. [In one commonly studied interpretation, the mechanism by which
this proceeds is 'instantaneous collapse of the wavefunction'. But
the rules of QM do not require this interpretation, and several
other perfectly valid interpretations exist.] The second system
would instantaneously be put into a state of welldefined observable A,
and, consequently, illdefined observable B, spoiling the measurement.
Yet, one could imagine the two measurements were so far apart in
space that special relativity would prohibit any influence of one
measurement over the other. [After the neutralpion decay, we can wait until
the two photons are a lightyear apart, and then "simultaneously" measure
the xspin of photon 1 and the yspin of photon 2. QM suggests that if,
for example, the measurement of the photon 1 xspin happens first, this
measurement must instantaneously force photon 2 into a state of illdefined
yspin, even though it is lightyears away from photon 1.
How do we reconcile the fact that photon 2 "knows" that the xspin
of photon 1 has been measured, even though they are separated by
lightyears of space and far too little time has passed for information
to have travelled to it according to the rules of Special Relativity?
There are basically two choices. You can accept the postulates of QM"
as a fact of life, in spite of its seemingly uncomfortable coexistence
with special relativity, or you can postulate that QM is not complete,
that there *was* more information available for the description of the
twoparticle system at the time it was created, carried away by both
photons, and that you just didn't know it because QM does not properly
account for it.
So, EPR postulated the existence of hidden variables, some sofar
unknown properties, of the systems should account for the discrepancy.
Their claim was that QM theory is incomplete; it does not completely
describe the physical reality. System II knows all about System I
long before the scientist measures any of the observables, and thereby
supposedly consigning the other noncommuting observables to obscurity.
No instantaneous actionatadistance is necessary in this picture,
which postulates that each System has more parameters than are
accounted by QM. Niels Bohr, one of the founders of QM, held the opposite
view and defended a strict interpretation, the Copenhagen Interpretation,
of QM.
In 1964 John S. Bell proposed a mechanism to test for the existence
of these hidden parameters, and he developed his inequality principle as
the basis for such a test.
Use the example of two photons configured in the singlet state,
consider this: After separation, each photon will have spin values for
each of the three axes of space, and each spin can have one of two values;
call them up and down. Call the axes A, B and C and call the spin in the A
axis A+ if it is up in that axis, otherwise call it A. Use similar
definitions for the other two axes.
Now perform the experiment. Measure the spin in one axis of one
particle and the spin in another axis of the other photon. If EPR were
correct, each photon will simultaneously have properties for spin in each
of axes A, B and C.
Look at the statistics. Perform the measurements with a number of
sets of photons. Use the symbol N(A+, B) to designate the words "the
number of photons with A+ and B." Similarly for N(A+, B+), N(B, C+),
etc. Also use the designation N(A+, B, C+) to mean "the number of photons
with A+, B and C+," and so on. It's easy to demonstrate that for a set of
photons
(1) N(A+, B) = N(A+, B, C+) + N(A+, B, C)
because all of the (A+, B, C+) and all of the (A+, B, C) photons are
included in the designation (A+, B), and nothing else is included in N(A+,
B). You can make this claim if these measurements are connected to some
real properties of the photons.
Let n[A+, B+] be the designation for "the number of measurements of
pairs of photons in which the first photon measured A+, and the second
photon measured B+." Use a similar designation for the other possible
results. This is necessary because this is all it is possible to measure.
You can't measure both A and B of the same photon. Bell demonstrated that
in an actual experiment, if (1) is true (indicating real properties), then
the following must be true:
(2) n[A+, B+] <= n[A+, C+] + n[B+, C].
Additional inequality relations can be written by just making the
appropriate permutations of the letters A, B and C and the two signs. This
is Bell's inequality principle, and it is proved to be true if there are
real (perhaps hidden) parameters to account for the measurements.
At the time Bell's result first became known, the experimental
record was reviewed to see if any known results provided evidence against
locality. None did. Thus an effort began to develop tests of Bell's
inequality. A series of experiments was conducted by Aspect ending with one
in which polarizer angles were changed while the photons were `in flight'.
This was widely regarded at the time as being a reasonably conclusive
experiment confirming the predictions of QM.
Three years later Franson published a paper showing that the timing
constraints in this experiment were not adequate to confirm that locality
was violated. Aspect measured the time delays between detections of photon
pairs. The critical time delay is that between when a polarizer angle is
changed and when this affects the statistics of detecting photon pairs.
Aspect estimated this time based on the speed of a photon and the distance
between the polarizers and the detectors. Quantum mechanics does not allow
making assumptions about *where* a particle is between detections. We
cannot know *when* a particle traverses a polarizer unless we detect the
particle *at* the polarizer.
Experimental tests of Bell's inequality are ongoing but none has
yet fully addressed the issue raised by Franson. In addition there is an
issue of detector efficiency. By postulating new laws of physics one can
get the expected correlations without any nonlocal effects unless the
detectors are close to 90% efficient. The importance of these issues is a
matter of judgement.
The subject is alive theoretically as well. In the 1970's
Eberhard derived Bell's result without reference to local hidden variable
theories; it applies to all local theories. Eberhard also showed that the
nonlocal effects that QM predicts cannot be used for superluminal
communication. The subject is not yet closed, and may yet provide more
interesting insights into the subtleties of quantum mechanics.
REFERENCES:
1. A. Einstein, B. Podolsky, N. Rosen: "Can quantummechanical
description of physical reality be considered complete?"
Physical Review 41, 777 (15 May 1935). (The original EPR paper)
2. D. Bohm: Quantum Theory, Dover, New York (1957). (Bohm
discusses some of his ideas concerning hidden variables.)
3. N. Herbert: Quantum Reality, Doubleday. (A very good
popular treatment of EPR and related issues)
4. M. Gardner: Science  Good, Bad and Bogus, Prometheus Books.
(Martin Gardner gives a skeptics view of the fringe science
associated with EPR.)
5. J. Gribbin: In Search of Schrodinger's Cat, Bantam Books.
(A popular treatment of EPR and the paradox of "Schrodinger's
cat" that results from the Copenhagen interpretation)
6. N. Bohr: "Can quantummechanical description of physical
reality be considered complete?" Physical Review 48, 696 (15 Oct
1935). (Niels Bohr's response to EPR)
7. J. Bell: "On the Einstein Podolsky Rosen paradox" Physics 1
#3, 195 (1964).
8. J. Bell: "On the problem of hidden variables in quantum
mechanics" Reviews of Modern Physics 38 #3, 447 (July 1966).
9. D. Bohm, J. Bub: "A proposed solution of the measurement
problem in quantum mechanics by a hidden variable theory"
Reviews of Modern Physics 38 #3, 453 (July 1966).
10. B. DeWitt: "Quantum mechanics and reality" Physics Today p.
30 (Sept 1970).
11. J. Clauser, A. Shimony: "Bell's theorem: experimental
tests and implications" Rep. Prog. Phys. 41, 1881 (1978).
12. A. Aspect, Dalibard, Roger: "Experimental test of Bell's
inequalities using time varying analyzers" Physical Review
Letters 49 #25, 1804 (20 Dec 1982).
13. A. Aspect, P. Grangier, G. Roger: "Experimental realization
of EinsteinPodolskyRosenBohm gedankenexperiment; a new
violation of Bell's inequalities" Physical Review Letters 49
#2, 91 (12 July 1982).
14. A. Robinson: "Loophole closed in quantum mechanics test"
Science 219, 40 (7 Jan 1983).
15. B. d'Espagnat: "The quantum theory and reality" Scientific
American 241 #5 (November 1979).
16. "Bell's Theorem and Delayed Determinism", Franson, Physical Review D,
pgs. 25292532, Vol. 31, No. 10, May 1985.
17. "Bell's Theorem without Hidden Variables", P. H. Eberhard, Il Nuovo
Cimento, 38 B 1, pgs. 7580, (1977).
18. "Bell's Theorem and the Different Concepts of Locality", P. H.
Eberhard, Il Nuovo Cimento 46 B, pgs. 392419, (1978).
********************************************************************************
END OF FAQ
EMail Fredric L. Rice / The Skeptic Tank
