Compress.txt and the associated C source files were uploaded to GEnie from Japan by Kenjir

---
Master Index Current Directory Index Go to SkepticTank Go to Human Rights activist Keith Henson Go to Scientology cult

Skeptic Tank!

Compress.txt and the associated C source files were uploaded to GEnie from Japan by Kenjirou Okubo. He provided this short introduction: This article by H.Okumura explains various algorithms of Data Compression. The article, originally uploaded in his workshop, is posted here with his permission. Also includes three C programs illustrating lzari, lzss and lzhuf methods uploaded with permission of their authors. These are the compression schemes currently being investigated by Japanese hobbiest programmers. -Kenjirou Okubo ---------------------------------------------------------------------------- Data Compression Algorithms of LARC and LHarc Haruhiko Okumura* *The author is the sysop of the Science SIG of PV-VAN. His address is: 12-2-404 Green Heights, 580 Nagasawa, Yokosuka 239 Japan ---------------------------------------------------------------------------- 1. Introduction In the spring of 1988, I wrote a very simple data compression program named LZSS in C language, and uploaded it to the Science SIG (forum) of PC-VAN, Japan's biggest personal computer network. That program was based on Storer and Szymanski's slightly modified version of one of Lempel and Ziv's algorithms. Despite its simplicity, for most files its compression outperformed the archivers then widely used. Kazuhiko Miki rewrote my LZSS in Turbo Pascal and assembly language, and soon made it evolve into a complete archiver, which he named LARC. The first versions of LZSS and LARC were rather slow. So I rewrote my LZSS using a binary tree, and so did Miki. Although LARC's encoding was slower than the fastest archiver available, its decoding was quite fast, and its algorithm was so simple that even self-extracting files (compressed files plus decoder) it created were usually smaller than non-self-extracting files from other archivers. Soon many hobby programmers joined the archiver project at the forum. Very many suggestions were made, and LARC was revised again and again. By the summer of 1988, LARC's speed and compression have improved so much that LARC-compressed programs were beginning to be uploaded in many forums of PC-VAN and other networks. In that summer I wrote another program, LZARI, which combined the LZSS algorithm with adaptive arithmetic compression. Although it was slower than LZSS, its compression performance was amazing. Miki, the author of LARC, uploaded LZARI to NIFTY-Serve, another big information network in Japan. In NIFTY-Serve, Haruyasu Yoshizaki replaced LZARI's adaptive arithmetic coding with a version of adaptive Huffman coding to increase speed. Based on this algorithm, which he called LZHUF, he developed yet another archiver, LHarc. In what follows, I will review several of these algorithms and supply simplified codes in C language. 2. Simple coding methods Replacing several (usually 8 or 4) "space" characters by one "tab" character is a very primitive method for data compression. Another simple method is run-length coding, which encodes the message "AAABBBBAACCCC" into "3A4B2A4C", for example. 3. LZSS coding This scheme is initiated by Ziv and Lempel [1]. A slightly modified version is described by Storer and Szymanski [2]. An implementation using a binary tree is proposed by Bell [3]. The algorithm is quite simple: Keep a ring buffer, which initially contains "space" characters only. Read several letters from the file to the buffer. Then search the buffer for the longest string that matches the letters just read, and send its length and position in the buffer. If the buffer size is 4096 bytes, the position can be encoded in 12 bits. If we represent the match length in four bits, the pair is two bytes long. If the longest match is no more than two characters, then we send just one character without encoding, and restart the process with the next letter. We must send one extra bit each time to tell the decoder whether we are sending a pair or an unencoded character. The accompanying file LZSS.C is a version of this algorithm. This implementation uses multiple binary trees to speed up the search for the longest match. All the programs in this article are written in draft-proposed ANSI C. I tested them with Turbo C 2.0. 4. LZW coding This scheme was devised by Ziv and Lempel [4], and modified by Welch [5]. The LZW coding has been adopted by most of the existing archivers, such as ARC and PKZIP. The algorithm can be made relatively fast, and is suitable for hardware implementation as well. The algorithm can be outlined as follows: Prepare a table that can contain several thousand items. Initially register in its 0th through 255th positions the usual 256 characters. Read several letters from the file to be encoded, and search the table for the longest match. Suppose the longest match is given by the string "ABC". Send the position of "ABC" in the table. Read the next character from the file. If it is "D", then register a new string "ABCD" in the table, and restart the process with the letter "D". If the table becomes full, discard the oldest item or, preferably, the least used. A Pascal program for this algorithm is given in Storer's book [6]. 5. Huffman coding Classical Huffman coding is invented by Huffman [7]. A fairly readable accound is given in Sedgewick [8]. Suppose the text to be encoded is "ABABACA", with four A's, two B's, and a C. We represent this situation as follows: 4 2 1 | | | A B C Combine the least frequent two characters into one, resulting in the new frequency 2 + 1 = 3: 4 3 | / \ A B C Repeat the above step until the whole characters combine into a tree: 7 / \ / 3 / / \ A B C Start at the top ("root") of this encoding tree, and travel to the character you want to encode. If you go left, send a "0"; otherwise send a "1". Thus, "A" is encoded by "0", "B" by "10", "C" by "11". Algotether, "ABABACA" will be encoded into ten bits, "0100100110". To decode this code, the decoder must know the encoding tree, which must be sent separately. A modification to this classical Huffman coding is the adaptive, or dynamic, Huffman coding. See, e.g., Gallager [9]. In this method, the encoder and the decoder processes the first letter of the text as if the frequency of each character in the file were one, say. After the first letter has been processed, both parties increment the frequency of that character by one. For example, if the first letter is 'C', then freq['C'] becomes two, whereas every other frequencies are still one. Then the both parties modify the encoding tree accordingly. Then the second letter will be encoded and decoded, and so on. 6. Arithmetic coding The original concept of arithmetic coding is proposed by P. Elias. An implementation in C language is described by Witten and others [10]. Although the Huffman coding is optimal if each character must be encoded into a fixed (integer) number of bits, arithmetic coding wins if no such restriction is made. As an example we shall encode "AABA" using arithmetic coding. For simplicity suppose we know beforehand that the probabilities for "A" and "B" to appear in the text are 3/4 and 1/4, respectively. Initially, consider an interval: 0 <= x < 1. Since the first character is "A" whose probability is 3/4, we shrink the interval to the lower 3/4: 0 <= x < 3/4. The next character is "A" again, so we take the lower 3/4: 0 <= x < 9/16. Next comes "B" whose probability is 1/4, so we take the upper 1/4: 27/64 <= x < 9/16, because "B" is the second element in our alphabet, {A, B}. The last character is "A" and the interval is 27/64 <= x < 135/256, which can be written in binary notation 0.011011 <= x < 0.10000111. Choose from this interval any number that can be represented in fewest bits, say 0.1, and send the bits to the right of "0."; in this case we send only one bit, "1". Thus we have encoded four letters into one bit! With the Huffman coding, four letters could not be encoded into less than four bits. To decode the code "1", we just reverse the process: First, we supply the "0." to the right of the received code "1", resulting in "0.1" in binary notation, or 1/2. Since this number is in the first 3/4 of the initial interval 0 <= x < 1, the first character must be "A". Shrink the interval into the lower 3/4. In this new interval, the number 1/2 lies in the lower 3/4 part, so the second character is again "A", and so on. The number of letters in the original file must be sent separately (or a special 'EOF' character must be appended at the end of the file). The algorithm described above requires that both the sender and receiver know the probability distribution for the characters. The adaptive version of the algorithm removes this restriction by first supposing uniform or any agreed-upon distribution of characters that approximates the true distribution, and then updating the distribution after each character is sent and received. 7. LZARI In each step the LZSS algorithm sends either a character or a pair. Among these, perhaps character "e" appears more frequently than "x", and a pair of length 3 might be commoner than one of length 18, say. Thus, if we encode the more frequent in fewer bits and the less frequent in more bits, the total length of the encoded text will be diminished. This consideration suggests that we use Huffman or arithmetic coding, preferably of adaptive kind, along with LZSS. This is easier said than done, because there are many possible combinations. Adaptive compression must keep running statistics of frequency distribution. Too many items make statistics unreliable. What follows is not even an approximate solution to the problem posed above, but anyway this was what I did in the summer of 1988. I extended the character set from 256 to three-hundred or so in size, and let characters 0 through 255 be the usual 8-bit characters, whereas characters 253 + n represent that what follows is a position of string of length n, where n = 3, 4 , .... These extended set of characters will be encoded with adaptive arithmetic compression. I also observed that longest-match strings tend to be the ones that were read relatively recently. Therefore, recent positions should be encoded into fewer bits. Since 4096 positions are too many to encode adaptively, I fixed the probability distribution of the positions "by hand." The distribution function given in the accompanying LZARI.C is rather tentative; it is not based on thorough experimentation. In retrospect, I could encode adaptively the most significant 6 bits, say, or perhaps by some more ingenious method adapt the parameters of the distribution function to the running statistics. At any rate, the present version of LZARI treats the positions rather separately, so that the overall compression is by no means optimal. Furthermore, the string length threshold above which strings are coded into pairs is fixed, but logically its value must change according to the length of the pair we would get. 8. LZHUF LZHUF, the algorithm of Haruyasu Yoshizaki's archiver LHarc, replaces LZARI's adaptive arithmetic coding with adaptive Huffman. LZHUF encodes the most significant 6 bits of the position in its 4096-byte buffer by table lookup. More recent, and hence more probable, positions are coded in less bits. On the other hand, the remaining 6 bits are sent verbatim. Because Huffman coding encodes each letter into a fixed number of bits, table lookup can be easily implemented. Though theoretically Huffman cannot exceed arithmetic compression, the difference is very slight, and LZHUF is fairly fast. The accompanying file LZHUF.C was written by Yoshizaki. I translated the comments into English and made a few trivial changes to make it conform to the ANSI C standard. References [1] J. Ziv and A. Lempel, IEEE Trans. IT-23, 337-343 (1977). [2] J. A. Storer and T. G. Szymanski, J. ACM, 29, 928-951 (1982). [3] T. C. Bell, IEEE Trans. COM-34, 1176-1182 (1986). [4] J. Ziv and A. Lempel, IEEE Trans. IT-24, 530-536 (1978). [5] T. A. Welch, Computer, 17, No.6, 8-19 (1984). [6] J. A. Storer, Data Compression: Methods and Theory (Computer Science Press, 1988). [7] D. A. Huffman, Proc IRE 40, 1098-1101 (1952). [8] R. Sedgewick, Algorithms, 2nd ed. (Addison-Wesley, 1988). [9] R. G. Gallager, IEEE Trans. IT-24, 668-674 (1978). [10] I. E. Witten, R. M. Neal, and J. G. Cleary, Commun. ACM 30, 520-540 (1987). /************************************************************** LZARI.C -- A Data Compression Program (tab = 4 spaces) *************************************************************** 4/7/1989 Haruhiko Okumura Use, distribute, and modify this program freely. Please send me your improved versions. PC-VAN SCIENCE NIFTY-Serve PAF01022 CompuServe 74050,1022 **************************************************************/ #include #include #include #include /********** Bit I/O **********/ FILE *infile, *outfile; unsigned long int textsize = 0, codesize = 0, printcount = 0; void Error(char *message) { printf("\n%s\n", message); exit(EXIT_FAILURE); } void PutBit(int bit) /* Output one bit (bit = 0,1) */ { static unsigned int buffer = 0, mask = 128; if (bit) buffer |= mask; if ((mask >>= 1) == 0) { if (putc(buffer, outfile) == EOF) Error("Write Error"); buffer = 0; mask = 128; codesize++; } } void FlushBitBuffer(void) /* Send remaining bits */ { int i; for (i = 0; i < 7; i++) PutBit(0); } int GetBit(void) /* Get one bit (0 or 1) */ { static unsigned int buffer, mask = 0; if ((mask >>= 1) == 0) { buffer = getc(infile); mask = 128; } return ((buffer & mask) != 0); } /********** LZSS with multiple binary trees **********/ #define N 4096 /* size of ring buffer */ #define F 60 /* upper limit for match_length */ #define THRESHOLD 2 /* encode string into position and length if match_length is greater than this */ #define NIL N /* index for root of binary search trees */ unsigned char text_buf[N + F - 1]; /* ring buffer of size N, with extra F-1 bytes to facilitate string comparison */ int match_position, match_length, /* of longest match. These are set by the InsertNode() procedure. */ lson[N + 1], rson[N + 257], dad[N + 1]; /* left & right children & parents -- These constitute binary search trees. */ void InitTree(void) /* Initialize trees */ { int i; /* For i = 0 to N - 1, rson[i] and lson[i] will be the right and left children of node i. These nodes need not be initialized. Also, dad[i] is the parent of node i. These are initialized to NIL (= N), which stands for 'not used.' For i = 0 to 255, rson[N + i + 1] is the root of the tree for strings that begin with character i. These are initialized to NIL. Note there are 256 trees. */ for (i = N + 1; i <= N + 256; i++) rson[i] = NIL; /* root */ for (i = 0; i < N; i++) dad[i] = NIL; /* node */ } void InsertNode(int r) /* Inserts string of length F, text_buf[r..r+F-1], into one of the trees (text_buf[r]'th tree) and returns the longest-match position and length via the global variables match_position and match_length. If match_length = F, then removes the old node in favor of the new one, because the old one will be deleted sooner. Note r plays double role, as tree node and position in buffer. */ { int i, p, cmp, temp; unsigned char *key; cmp = 1; key = &text_buf[r]; p = N + 1 + key[0]; rson[r] = lson[r] = NIL; match_length = 0; for ( ; ; ) { if (cmp >= 0) { if (rson[p] != NIL) p = rson[p]; else { rson[p] = r; dad[r] = p; return; } } else { if (lson[p] != NIL) p = lson[p]; else { lson[p] = r; dad[r] = p; return; } } for (i = 1; i < F; i++) if ((cmp = key[i] - text_buf[p + i]) != 0) break; if (i > THRESHOLD) { if (i > match_length) { match_position = (r - p) & (N - 1); if ((match_length = i) >= F) break; } else if (i == match_length) { if ((temp = (r - p) & (N - 1)) < match_position) match_position = temp; } } } dad[r] = dad[p]; lson[r] = lson[p]; rson[r] = rson[p]; dad[lson[p]] = r; dad[rson[p]] = r; if (rson[dad[p]] == p) rson[dad[p]] = r; else lson[dad[p]] = r; dad[p] = NIL; /* remove p */ } void DeleteNode(int p) /* Delete node p from tree */ { int q; if (dad[p] == NIL) return; /* not in tree */ if (rson[p] == NIL) q = lson[p]; else if (lson[p] == NIL) q = rson[p]; else { q = lson[p]; if (rson[q] != NIL) { do { q = rson[q]; } while (rson[q] != NIL); rson[dad[q]] = lson[q]; dad[lson[q]] = dad[q]; lson[q] = lson[p]; dad[lson[p]] = q; } rson[q] = rson[p]; dad[rson[p]] = q; } dad[q] = dad[p]; if (rson[dad[p]] == p) rson[dad[p]] = q; else lson[dad[p]] = q; dad[p] = NIL; } /********** Arithmetic Compression **********/ /* If you are not familiar with arithmetic compression, you should read I. E. Witten, R. M. Neal, and J. G. Cleary, Communications of the ACM, Vol. 30, pp. 520-540 (1987), from which much have been borrowed. */ #define M 15 /* Q1 (= 2 to the M) must be sufficiently large, but not so large as the unsigned long 4 * Q1 * (Q1 - 1) overflows. */ #define Q1 (1UL << M) #define Q2 (2 * Q1) #define Q3 (3 * Q1) #define Q4 (4 * Q1) #define MAX_CUM (Q1 - 1) #define N_CHAR (256 - THRESHOLD + F) /* character code = 0, 1, ..., N_CHAR - 1 */ unsigned long int low = 0, high = Q4, value = 0; int shifts = 0; /* counts for magnifying low and high around Q2 */ int char_to_sym[N_CHAR], sym_to_char[N_CHAR + 1]; unsigned int sym_freq[N_CHAR + 1], /* frequency for symbols */ sym_cum[N_CHAR + 1], /* cumulative freq for symbols */ position_cum[N + 1]; /* cumulative freq for positions */ void StartModel(void) /* Initialize model */ { int ch, sym, i; sym_cum[N_CHAR] = 0; for (sym = N_CHAR; sym >= 1; sym--) { ch = sym - 1; char_to_sym[ch] = sym; sym_to_char[sym] = ch; sym_freq[sym] = 1; sym_cum[sym - 1] = sym_cum[sym] + sym_freq[sym]; } sym_freq[0] = 0; /* sentinel (!= sym_freq[1]) */ position_cum[N] = 0; for (i = N; i >= 1; i--) position_cum[i - 1] = position_cum[i] + 10000 / (i + 200); /* empirical distribution function (quite tentative) */ /* Please devise a better mechanism! */ } void UpdateModel(int sym) { int i, c, ch_i, ch_sym; if (sym_cum[0] >= MAX_CUM) { c = 0; for (i = N_CHAR; i > 0; i--) { sym_cum[i] = c; c += (sym_freq[i] = (sym_freq[i] + 1) >> 1); } sym_cum[0] = c; } for (i = sym; sym_freq[i] == sym_freq[i - 1]; i--) ; if (i < sym) { ch_i = sym_to_char[i]; ch_sym = sym_to_char[sym]; sym_to_char[i] = ch_sym; sym_to_char[sym] = ch_i; char_to_sym[ch_i] = sym; char_to_sym[ch_sym] = i; } sym_freq[i]++; while (--i >= 0) sym_cum[i]++; } static void Output(int bit) /* Output 1 bit, followed by its complements */ { PutBit(bit); for ( ; shifts > 0; shifts--) PutBit(! bit); } void EncodeChar(int ch) { int sym; unsigned long int range; sym = char_to_sym[ch]; range = high - low; high = low + (range * sym_cum[sym - 1]) / sym_cum[0]; low += (range * sym_cum[sym ]) / sym_cum[0]; for ( ; ; ) { if (high <= Q2) Output(0); else if (low >= Q2) { Output(1); low -= Q2; high -= Q2; } else if (low >= Q1 && high <= Q3) { shifts++; low -= Q1; high -= Q1; } else break; low += low; high += high; } UpdateModel(sym); } void EncodePosition(int position) { unsigned long int range; range = high - low; high = low + (range * position_cum[position ]) / position_cum[0]; low += (range * position_cum[position + 1]) / position_cum[0]; for ( ; ; ) { if (high <= Q2) Output(0); else if (low >= Q2) { Output(1); low -= Q2; high -= Q2; } else if (low >= Q1 && high <= Q3) { shifts++; low -= Q1; high -= Q1; } else break; low += low; high += high; } } void EncodeEnd(void) { shifts++; if (low < Q1) Output(0); else Output(1); FlushBitBuffer(); /* flush bits remaining in buffer */ } int BinarySearchSym(unsigned int x) /* 1 if x >= sym_cum[1], N_CHAR if sym_cum[N_CHAR] > x, i such that sym_cum[i - 1] > x >= sym_cum[i] otherwise */ { int i, j, k; i = 1; j = N_CHAR; while (i < j) { k = (i + j) / 2; if (sym_cum[k] > x) i = k + 1; else j = k; } return i; } int BinarySearchPos(unsigned int x) /* 0 if x >= position_cum[1], N - 1 if position_cum[N] > x, i such that position_cum[i] > x >= position_cum[i + 1] otherwise */ { int i, j, k; i = 1; j = N; while (i < j) { k = (i + j) / 2; if (position_cum[k] > x) i = k + 1; else j = k; } return i - 1; } void StartDecode(void) { int i; for (i = 0; i < M + 2; i++) value = 2 * value + GetBit(); } int DecodeChar(void) { int sym, ch; unsigned long int range; range = high - low; sym = BinarySearchSym((unsigned int) (((value - low + 1) * sym_cum[0] - 1) / range)); high = low + (range * sym_cum[sym - 1]) / sym_cum[0]; low += (range * sym_cum[sym ]) / sym_cum[0]; for ( ; ; ) { if (low >= Q2) { value -= Q2; low -= Q2; high -= Q2; } else if (low >= Q1 && high <= Q3) { value -= Q1; low -= Q1; high -= Q1; } else if (high > Q2) break; low += low; high += high; value = 2 * value + GetBit(); } ch = sym_to_char[sym]; UpdateModel(sym); return ch; } int DecodePosition(void) { int position; unsigned long int range; range = high - low; position = BinarySearchPos((unsigned int) (((value - low + 1) * position_cum[0] - 1) / range)); high = low + (range * position_cum[position ]) / position_cum[0]; low += (range * position_cum[position + 1]) / position_cum[0]; for ( ; ; ) { if (low >= Q2) { value -= Q2; low -= Q2; high -= Q2; } else if (low >= Q1 && high <= Q3) { value -= Q1; low -= Q1; high -= Q1; } else if (high > Q2) break; low += low; high += high; value = 2 * value + GetBit(); } return position; } /********** Encode and Decode **********/ void Encode(void) { int i, c, len, r, s, last_match_length; fseek(infile, 0L, SEEK_END); textsize = ftell(infile); if (fwrite(&textsize, sizeof textsize, 1, outfile) < 1) Error("Write Error"); /* output size of text */ codesize += sizeof textsize; if (textsize == 0) return; rewind(infile); textsize = 0; StartModel(); InitTree(); s = 0; r = N - F; for (i = s; i < r; i++) text_buf[i] = ' '; for (len = 0; len < F && (c = getc(infile)) != EOF; len++) text_buf[r + len] = c; textsize = len; for (i = 1; i <= F; i++) InsertNode(r - i); InsertNode(r); do { if (match_length > len) match_length = len; if (match_length <= THRESHOLD) { match_length = 1; EncodeChar(text_buf[r]); } else { EncodeChar(255 - THRESHOLD + match_length); EncodePosition(match_position - 1); } last_match_length = match_length; for (i = 0; i < last_match_length && (c = getc(infile)) != EOF; i++) { DeleteNode(s); text_buf[s] = c; if (s < F - 1) text_buf[s + N] = c; s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); InsertNode(r); } if ((textsize += i) > printcount) { printf("%12ld\r", textsize); printcount += 1024; } while (i++ < last_match_length) { DeleteNode(s); s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); if (--len) InsertNode(r); } } while (len > 0); EncodeEnd(); printf("In : %lu bytes\n", textsize); printf("Out: %lu bytes\n", codesize); printf("Out/In: %.3f\n", (double)codesize / textsize); } void Decode(void) { int i, j, k, r, c; unsigned long int count; if (fread(&textsize, sizeof textsize, 1, infile) < 1) Error("Read Error"); /* read size of text */ if (textsize == 0) return; StartDecode(); StartModel(); for (i = 0; i < N - F; i++) text_buf[i] = ' '; r = N - F; for (count = 0; count < textsize; ) { c = DecodeChar(); if (c < 256) { putc(c, outfile); text_buf[r++] = c; r &= (N - 1); count++; } else { i = (r - DecodePosition() - 1) & (N - 1); j = c - 255 + THRESHOLD; for (k = 0; k < j; k++) { c = text_buf[(i + k) & (N - 1)]; putc(c, outfile); text_buf[r++] = c; r &= (N - 1); count++; } } if (count > printcount) { printf("%12lu\r", count); printcount += 1024; } } printf("%12lu\n", count); } int main(int argc, char *argv[]) { char *s; if (argc != 4) { printf("'lzari e file1 file2' encodes file1 into file2.\n" "'lzari d file2 file1' decodes file2 into file1.\n"); return EXIT_FAILURE; } if ((s = argv[1], s[1] || strpbrk(s, "DEde") == NULL) || (s = argv[2], (infile = fopen(s, "rb")) == NULL) || (s = argv[3], (outfile = fopen(s, "wb")) == NULL)) { printf("??? %s\n", s); return EXIT_FAILURE; } if (toupper(*argv[1]) == 'E') Encode(); else Decode(); fclose(infile); fclose(outfile); return EXIT_SUCCESS; } /************************************************************** lzhuf.c written by Haruyasu Yoshizaki 11/20/1988 some minor changes 4/6/1989 comments translated by Haruhiko Okumura 4/7/1989 **************************************************************/ #include #include #include #include FILE *infile, *outfile; unsigned long int textsize = 0, codesize = 0, printcount = 0; char wterr[] = "Can't write."; void Error(char *message) { printf("\n%s\n", message); exit(EXIT_FAILURE); } /********** LZSS compression **********/ #define N 4096 /* buffer size */ #define F 60 /* lookahead buffer size */ #define THRESHOLD 2 #define NIL N /* leaf of tree */ unsigned char text_buf[N + F - 1]; int match_position, match_length, lson[N + 1], rson[N + 257], dad[N + 1]; void InitTree(void) /* initialize trees */ { int i; for (i = N + 1; i <= N + 256; i++) rson[i] = NIL; /* root */ for (i = 0; i < N; i++) dad[i] = NIL; /* node */ } void InsertNode(int r) /* insert to tree */ { int i, p, cmp; unsigned char *key; unsigned c; cmp = 1; key = &text_buf[r]; p = N + 1 + key[0]; rson[r] = lson[r] = NIL; match_length = 0; for ( ; ; ) { if (cmp >= 0) { if (rson[p] != NIL) p = rson[p]; else { rson[p] = r; dad[r] = p; return; } } else { if (lson[p] != NIL) p = lson[p]; else { lson[p] = r; dad[r] = p; return; } } for (i = 1; i < F; i++) if ((cmp = key[i] - text_buf[p + i]) != 0) break; if (i > THRESHOLD) { if (i > match_length) { match_position = ((r - p) & (N - 1)) - 1; if ((match_length = i) >= F) break; } if (i == match_length) { if ((c = ((r - p) & (N - 1)) - 1) < match_position) { match_position = c; } } } } dad[r] = dad[p]; lson[r] = lson[p]; rson[r] = rson[p]; dad[lson[p]] = r; dad[rson[p]] = r; if (rson[dad[p]] == p) rson[dad[p]] = r; else lson[dad[p]] = r; dad[p] = NIL; /* remove p */ } void DeleteNode(int p) /* remove from tree */ { int q; if (dad[p] == NIL) return; /* not registered */ if (rson[p] == NIL) q = lson[p]; else if (lson[p] == NIL) q = rson[p]; else { q = lson[p]; if (rson[q] != NIL) { do { q = rson[q]; } while (rson[q] != NIL); rson[dad[q]] = lson[q]; dad[lson[q]] = dad[q]; lson[q] = lson[p]; dad[lson[p]] = q; } rson[q] = rson[p]; dad[rson[p]] = q; } dad[q] = dad[p]; if (rson[dad[p]] == p) rson[dad[p]] = q; else lson[dad[p]] = q; dad[p] = NIL; } /* Huffman coding */ #define N_CHAR (256 - THRESHOLD + F) /* kinds of characters (character code = 0..N_CHAR-1) */ #define T (N_CHAR * 2 - 1) /* size of table */ #define R (T - 1) /* position of root */ #define MAX_FREQ 0x8000 /* updates tree when the */ /* root frequency comes to this value. */ typedef unsigned char uchar; /* table for encoding and decoding the upper 6 bits of position */ /* for encoding */ uchar p_len[64] = { 0x03, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08 }; uchar p_code[64] = { 0x00, 0x20, 0x30, 0x40, 0x50, 0x58, 0x60, 0x68, 0x70, 0x78, 0x80, 0x88, 0x90, 0x94, 0x98, 0x9C, 0xA0, 0xA4, 0xA8, 0xAC, 0xB0, 0xB4, 0xB8, 0xBC, 0xC0, 0xC2, 0xC4, 0xC6, 0xC8, 0xCA, 0xCC, 0xCE, 0xD0, 0xD2, 0xD4, 0xD6, 0xD8, 0xDA, 0xDC, 0xDE, 0xE0, 0xE2, 0xE4, 0xE6, 0xE8, 0xEA, 0xEC, 0xEE, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF }; /* for decoding */ uchar d_code[256] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0C, 0x0C, 0x0C, 0x0C, 0x0D, 0x0D, 0x0D, 0x0D, 0x0E, 0x0E, 0x0E, 0x0E, 0x0F, 0x0F, 0x0F, 0x0F, 0x10, 0x10, 0x10, 0x10, 0x11, 0x11, 0x11, 0x11, 0x12, 0x12, 0x12, 0x12, 0x13, 0x13, 0x13, 0x13, 0x14, 0x14, 0x14, 0x14, 0x15, 0x15, 0x15, 0x15, 0x16, 0x16, 0x16, 0x16, 0x17, 0x17, 0x17, 0x17, 0x18, 0x18, 0x19, 0x19, 0x1A, 0x1A, 0x1B, 0x1B, 0x1C, 0x1C, 0x1D, 0x1D, 0x1E, 0x1E, 0x1F, 0x1F, 0x20, 0x20, 0x21, 0x21, 0x22, 0x22, 0x23, 0x23, 0x24, 0x24, 0x25, 0x25, 0x26, 0x26, 0x27, 0x27, 0x28, 0x28, 0x29, 0x29, 0x2A, 0x2A, 0x2B, 0x2B, 0x2C, 0x2C, 0x2D, 0x2D, 0x2E, 0x2E, 0x2F, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, }; uchar d_len[256] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, }; unsigned freq[T + 1]; /* frequency table */ int prnt[T + N_CHAR]; /* pointers to parent nodes, except for the */ /* elements [T..T + N_CHAR - 1] which are used to get */ /* the positions of leaves corresponding to the codes. */ int son[T]; /* pointers to child nodes (son[], son[] + 1) */ unsigned getbuf = 0; uchar getlen = 0; int GetBit(void) /* get one bit */ { int i; while (getlen <= 8) { if ((i = getc(infile)) < 0) i = 0; getbuf |= i << (8 - getlen); getlen += 8; } i = getbuf; getbuf <<= 1; getlen--; return (i < 0); } int GetByte(void) /* get one byte */ { unsigned i; while (getlen <= 8) { if ((i = getc(infile)) < 0) i = 0; getbuf |= i << (8 - getlen); getlen += 8; } i = getbuf; getbuf <<= 8; getlen -= 8; return i >> 8; } unsigned putbuf = 0; uchar putlen = 0; void Putcode(int l, unsigned c) /* output c bits of code */ { putbuf |= c >> putlen; if ((putlen += l) >= 8) { if (putc(putbuf >> 8, outfile) == EOF) { Error(wterr); } if ((putlen -= 8) >= 8) { if (putc(putbuf, outfile) == EOF) { Error(wterr); } codesize += 2; putlen -= 8; putbuf = c << (l - putlen); } else { putbuf <<= 8; codesize++; } } } /* initialization of tree */ void StartHuff(void) { int i, j; for (i = 0; i < N_CHAR; i++) { freq[i] = 1; son[i] = i + T; prnt[i + T] = i; } i = 0; j = N_CHAR; while (j <= R) { freq[j] = freq[i] + freq[i + 1]; son[j] = i; prnt[i] = prnt[i + 1] = j; i += 2; j++; } freq[T] = 0xffff; prnt[R] = 0; } /* reconstruction of tree */ void reconst(void) { int i, j, k; unsigned f, l; /* collect leaf nodes in the first half of the table */ /* and replace the freq by (freq + 1) / 2. */ j = 0; for (i = 0; i < T; i++) { if (son[i] >= T) { freq[j] = (freq[i] + 1) / 2; son[j] = son[i]; j++; } } /* begin constructing tree by connecting sons */ for (i = 0, j = N_CHAR; j < T; i += 2, j++) { k = i + 1; f = freq[j] = freq[i] + freq[k]; for (k = j - 1; f < freq[k]; k--); k++; l = (j - k) * 2; memmove(&freq[k + 1], &freq[k], l); freq[k] = f; memmove(&son[k + 1], &son[k], l); son[k] = i; } /* connect prnt */ for (i = 0; i < T; i++) { if ((k = son[i]) >= T) { prnt[k] = i; } else { prnt[k] = prnt[k + 1] = i; } } } /* increment frequency of given code by one, and update tree */ void update(int c) { int i, j, k, l; if (freq[R] == MAX_FREQ) { reconst(); } c = prnt[c + T]; do { k = ++freq[c]; /* if the order is disturbed, exchange nodes */ if (k > freq[l = c + 1]) { while (k > freq[++l]); l--; freq[c] = freq[l]; freq[l] = k; i = son[c]; prnt[i] = l; if (i < T) prnt[i + 1] = l; j = son[l]; son[l] = i; prnt[j] = c; if (j < T) prnt[j + 1] = c; son[c] = j; c = l; } } while ((c = prnt[c]) != 0); /* repeat up to root */ } unsigned code, len; void EncodeChar(unsigned c) { unsigned i; int j, k; i = 0; j = 0; k = prnt[c + T]; /* travel from leaf to root */ do { i >>= 1; /* if node's address is odd-numbered, choose bigger brother node */ if (k & 1) i += 0x8000; j++; } while ((k = prnt[k]) != R); Putcode(j, i); code = i; len = j; update(c); } void EncodePosition(unsigned c) { unsigned i; /* output upper 6 bits by table lookup */ i = c >> 6; Putcode(p_len[i], (unsigned)p_code[i] << 8); /* output lower 6 bits verbatim */ Putcode(6, (c & 0x3f) << 10); } void EncodeEnd(void) { if (putlen) { if (putc(putbuf >> 8, outfile) == EOF) { Error(wterr); } codesize++; } } int DecodeChar(void) { unsigned c; c = son[R]; /* travel from root to leaf, */ /* choosing the smaller child node (son[]) if the read bit is 0, */ /* the bigger (son[]+1} if 1 */ while (c < T) { c += GetBit(); c = son[c]; } c -= T; update(c); return c; } int DecodePosition(void) { unsigned i, j, c; /* recover upper 6 bits from table */ i = GetByte(); c = (unsigned)d_code[i] << 6; j = d_len[i]; /* read lower 6 bits verbatim */ j -= 2; while (j--) { i = (i << 1) + GetBit(); } return c | (i & 0x3f); } /* compression */ void Encode(void) /* compression */ { int i, c, len, r, s, last_match_length; fseek(infile, 0L, 2); textsize = ftell(infile); if (fwrite(&textsize, sizeof textsize, 1, outfile) < 1) Error(wterr); /* output size of text */ if (textsize == 0) return; rewind(infile); textsize = 0; /* rewind and re-read */ StartHuff(); InitTree(); s = 0; r = N - F; for (i = s; i < r; i++) text_buf[i] = ' '; for (len = 0; len < F && (c = getc(infile)) != EOF; len++) text_buf[r + len] = c; textsize = len; for (i = 1; i <= F; i++) InsertNode(r - i); InsertNode(r); do { if (match_length > len) match_length = len; if (match_length <= THRESHOLD) { match_length = 1; EncodeChar(text_buf[r]); } else { EncodeChar(255 - THRESHOLD + match_length); EncodePosition(match_position); } last_match_length = match_length; for (i = 0; i < last_match_length && (c = getc(infile)) != EOF; i++) { DeleteNode(s); text_buf[s] = c; if (s < F - 1) text_buf[s + N] = c; s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); InsertNode(r); } if ((textsize += i) > printcount) { printf("%12ld\r", textsize); printcount += 1024; } while (i++ < last_match_length) { DeleteNode(s); s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); if (--len) InsertNode(r); } } while (len > 0); EncodeEnd(); printf("In : %ld bytes\n", textsize); printf("Out: %ld bytes\n", codesize); printf("Out/In: %.3f\n", (double)codesize / textsize); } void Decode(void) /* recover */ { int i, j, k, r, c; unsigned long int count; if (fread(&textsize, sizeof textsize, 1, infile) < 1) Error("Can't read"); /* read size of text */ if (textsize == 0) return; StartHuff(); for (i = 0; i < N - F; i++) text_buf[i] = ' '; r = N - F; for (count = 0; count < textsize; ) { c = DecodeChar(); if (c < 256) { if (putc(c, outfile) == EOF) { Error(wterr); } text_buf[r++] = c; r &= (N - 1); count++; } else { i = (r - DecodePosition() - 1) & (N - 1); j = c - 255 + THRESHOLD; for (k = 0; k < j; k++) { c = text_buf[(i + k) & (N - 1)]; if (putc(c, outfile) == EOF) { Error(wterr); } text_buf[r++] = c; r &= (N - 1); count++; } } if (count > printcount) { printf("%12ld\r", count); printcount += 1024; } } printf("%12ld\n", count); } int main(int argc, char *argv[]) { char *s; if (argc != 4) { printf("'lzhuf e file1 file2' encodes file1 into file2.\n" "'lzhuf d file2 file1' decodes file2 into file1.\n"); return EXIT_FAILURE; } if ((s = argv[1], s[1] || strpbrk(s, "DEde") == NULL) || (s = argv[2], (infile = fopen(s, "rb")) == NULL) || (s = argv[3], (outfile = fopen(s, "wb")) == NULL)) { printf("??? %s\n", s); return EXIT_FAILURE; } if (toupper(*argv[1]) == 'E') Encode(); else Decode(); fclose(infile); fclose(outfile); return EXIT_SUCCESS; } /************************************************************** LZSS.C -- A Data Compression Program (tab = 4 spaces) *************************************************************** 4/6/1989 Haruhiko Okumura Use, distribute, and modify this program freely. Please send me your improved versions. PC-VAN SCIENCE NIFTY-Serve PAF01022 CompuServe 74050,1022 **************************************************************/ #include #include #include #include #define N 4096 /* size of ring buffer */ #define F 18 /* upper limit for match_length */ #define THRESHOLD 2 /* encode string into position and length if match_length is greater than this */ #define NIL N /* index for root of binary search trees */ unsigned long int textsize = 0, /* text size counter */ codesize = 0, /* code size counter */ printcount = 0; /* counter for reporting progress every 1K bytes */ unsigned char text_buf[N + F - 1]; /* ring buffer of size N, with extra F-1 bytes to facilitate string comparison */ int match_position, match_length, /* of longest match. These are set by the InsertNode() procedure. */ lson[N + 1], rson[N + 257], dad[N + 1]; /* left & right children & parents -- These constitute binary search trees. */ FILE *infile, *outfile; /* input & output files */ void InitTree(void) /* initialize trees */ { int i; /* For i = 0 to N - 1, rson[i] and lson[i] will be the right and left children of node i. These nodes need not be initialized. Also, dad[i] is the parent of node i. These are initialized to NIL (= N), which stands for 'not used.' For i = 0 to 255, rson[N + i + 1] is the root of the tree for strings that begin with character i. These are initialized to NIL. Note there are 256 trees. */ for (i = N + 1; i <= N + 256; i++) rson[i] = NIL; for (i = 0; i < N; i++) dad[i] = NIL; } void InsertNode(int r) /* Inserts string of length F, text_buf[r..r+F-1], into one of the trees (text_buf[r]'th tree) and returns the longest-match position and length via the global variables match_position and match_length. If match_length = F, then removes the old node in favor of the new one, because the old one will be deleted sooner. Note r plays double role, as tree node and position in buffer. */ { int i, p, cmp; unsigned char *key; cmp = 1; key = &text_buf[r]; p = N + 1 + key[0]; rson[r] = lson[r] = NIL; match_length = 0; for ( ; ; ) { if (cmp >= 0) { if (rson[p] != NIL) p = rson[p]; else { rson[p] = r; dad[r] = p; return; } } else { if (lson[p] != NIL) p = lson[p]; else { lson[p] = r; dad[r] = p; return; } } for (i = 1; i < F; i++) if ((cmp = key[i] - text_buf[p + i]) != 0) break; if (i > match_length) { match_position = p; if ((match_length = i) >= F) break; } } dad[r] = dad[p]; lson[r] = lson[p]; rson[r] = rson[p]; dad[lson[p]] = r; dad[rson[p]] = r; if (rson[dad[p]] == p) rson[dad[p]] = r; else lson[dad[p]] = r; dad[p] = NIL; /* remove p */ } void DeleteNode(int p) /* deletes node p from tree */ { int q; if (dad[p] == NIL) return; /* not in tree */ if (rson[p] == NIL) q = lson[p]; else if (lson[p] == NIL) q = rson[p]; else { q = lson[p]; if (rson[q] != NIL) { do { q = rson[q]; } while (rson[q] != NIL); rson[dad[q]] = lson[q]; dad[lson[q]] = dad[q]; lson[q] = lson[p]; dad[lson[p]] = q; } rson[q] = rson[p]; dad[rson[p]] = q; } dad[q] = dad[p]; if (rson[dad[p]] == p) rson[dad[p]] = q; else lson[dad[p]] = q; dad[p] = NIL; } void Encode(void) { int i, c, len, r, s, last_match_length, code_buf_ptr; unsigned char code_buf[17], mask; InitTree(); /* initialize trees */ code_buf[0] = 0; /* code_buf[1..16] saves eight units of code, and code_buf[0] works as eight flags, "1" representing that the unit is an unencoded letter (1 byte), "0" a position-and-length pair (2 bytes). Thus, eight units require at most 16 bytes of code. */ code_buf_ptr = mask = 1; s = 0; r = N - F; for (i = s; i < r; i++) text_buf[i] = ' '; /* Clear the buffer with any character that will appear often. */ for (len = 0; len < F && (c = getc(infile)) != EOF; len++) text_buf[r + len] = c; /* Read F bytes into the last F bytes of the buffer */ if ((textsize = len) == 0) return; /* text of size zero */ for (i = 1; i <= F; i++) InsertNode(r - i); /* Insert the F strings, each of which begins with one or more 'space' characters. Note the order in which these strings are inserted. This way, degenerate trees will be less likely to occur. */ InsertNode(r); /* Finally, insert the whole string just read. The global variables match_length and match_position are set. */ do { if (match_length > len) match_length = len; /* match_length may be spuriously long near the end of text. */ if (match_length <= THRESHOLD) { match_length = 1; /* Not long enough match. Send one byte. */ code_buf[0] |= mask; /* 'send one byte' flag */ code_buf[code_buf_ptr++] = text_buf[r]; /* Send uncoded. */ } else { code_buf[code_buf_ptr++] = (unsigned char) match_position; code_buf[code_buf_ptr++] = (unsigned char) (((match_position >> 4) & 0xf0) | (match_length - (THRESHOLD + 1))); /* Send position and length pair. Note match_length > THRESHOLD. */ } if ((mask <<= 1) == 0) { /* Shift mask left one bit. */ for (i = 0; i < code_buf_ptr; i++) /* Send at most 8 units of */ putc(code_buf[i], outfile); /* code together */ codesize += code_buf_ptr; code_buf[0] = 0; code_buf_ptr = mask = 1; } last_match_length = match_length; for (i = 0; i < last_match_length && (c = getc(infile)) != EOF; i++) { DeleteNode(s); /* Delete old strings and */ text_buf[s] = c; /* read new bytes */ if (s < F - 1) text_buf[s + N] = c; /* If the position is near the end of buffer, extend the buffer to make string comparison easier. */ s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); /* Since this is a ring buffer, increment the position modulo N. */ InsertNode(r); /* Register the string in text_buf[r..r+F-1] */ } if ((textsize += i) > printcount) { printf("%12ld\r", textsize); printcount += 1024; /* Reports progress each time the textsize exceeds multiples of 1024. */ } while (i++ < last_match_length) { /* After the end of text, */ DeleteNode(s); /* no need to read, but */ s = (s + 1) & (N - 1); r = (r + 1) & (N - 1); if (--len) InsertNode(r); /* buffer may not be empty. */ } } while (len > 0); /* until length of string to be processed is zero */ if (code_buf_ptr > 1) { /* Send remaining code. */ for (i = 0; i < code_buf_ptr; i++) putc(code_buf[i], outfile); codesize += code_buf_ptr; } printf("In : %ld bytes\n", textsize); /* Encoding is done. */ printf("Out: %ld bytes\n", codesize); printf("Out/In: %.3f\n", (double)codesize / textsize); } void Decode(void) /* Just the reverse of Encode(). */ { int i, j, k, r, c; unsigned int flags; for (i = 0; i < N - F; i++) text_buf[i] = ' '; r = N - F; flags = 0; for ( ; ; ) { if (((flags >>= 1) & 256) == 0) { if ((c = getc(infile)) == EOF) break; flags = c | 0xff00; /* uses higher byte cleverly */ } /* to count eight */ if (flags & 1) { if ((c = getc(infile)) == EOF) break; putc(c, outfile); text_buf[r++] = c; r &= (N - 1); } else { if ((i = getc(infile)) == EOF) break; if ((j = getc(infile)) == EOF) break; i |= ((j & 0xf0) << 4); j = (j & 0x0f) + THRESHOLD; for (k = 0; k <= j; k++) { c = text_buf[(i + k) & (N - 1)]; putc(c, outfile); text_buf[r++] = c; r &= (N - 1); } } } } int main(int argc, char *argv[]) { char *s; if (argc != 4) { printf("'lzss e file1 file2' encodes file1 into file2.\n" "'lzss d file2 file1' decodes file2 into file1.\n"); return EXIT_FAILURE; } if ((s = argv[1], s[1] || strpbrk(s, "DEde") == NULL) || (s = argv[2], (infile = fopen(s, "rb")) == NULL) || (s = argv[3], (outfile = fopen(s, "wb")) == NULL)) { printf("??? %s\n", s); return EXIT_FAILURE; } if (toupper(*argv[1]) == 'E') Encode(); else Decode(); fclose(infile); fclose(outfile); return EXIT_SUCCESS; } --end--

---

E-Mail Fredric L. Rice / The Skeptic Tank